RE: Structural Certification for Installation of Residential Solar THE ANTHONY CAMPBELL RESIDENCE:201 KUYPER DRIVE, UPPER NYACK, NY 10960

Attn: To Whom It May Concern

This Letter is for the existing roof framing which supports the new PV modules as well as the attachment of the PV system to existing roof framing. From the field observation report, the roof is made of Asphalt Shingles roofing over roof plywood supported by 2X8 Rafters at 16 inches. The slope of the roof was approximated to be 19 degrees.

After review of the field observation data and based on our structural capacity calculation, the existing roof framing has been determined to be adequate to support the imposed loads without structural upgrades. Contractor shall verify that existing framing is consistent with the described above before install. Should they find any discrepancies, a written approval from SEOR is mandatory before proceeding with install. Capacity calculations were done in accordance with applicable building codes.

Design Criteria

Code	2020 Building Code of N	Y (ASCE 7-16)			
Risk category		II	Wind Load	(component a	ind Cladding)
Roof Dead Load	Dr	10 psf		V	115 mph
PV Dead Load	DPV	3 psf		Exposure	С
Roof Live Load	Lr	20 psf			
Ground Snow	S	30 psf			

If you have any questions on the above, please do not hesitate to call.

Sincerely,

Structural Letter for PV Installation

Date: 6/3/2022

Job Address: 201 KUYPER DRIVE

UPPER NYACK, NY 10960

Job Name: THE ANTHONY CAMPBELL RESIDENCE

Job Number: 220603ACR

Scope of Work

This Letter is for the existing roof framing which supports the new PV modules as well as the attachment of the PV system to existing roof framing. All PV mounting equipment shall be designed and installed per manufacturer's approved installation specifications.

Table of Content

Sheet

- 1 Cover
- 2 Attachment Uplift checks
- 3 Roof Framing Check
- 4 Seismic Check and Scope of work

Engineering Calculations Summary

<u>Code</u>	2020 Building Code of NY	(ASCE 7-16)
Risk category		II
Roof Dead Load	Dr	10 psf
PV Dead Load	DPV	3 psf
Roof Live Load	Lr	20 psf
Ground Snow	S	30 psf
Wind Load	(component and Cladding)
	V	115 mph
	Exposure	С

References

NDS for Wood Construction

Sincerely,

Wind Load Cont.

Risk Category =	Į.	l
V=	115	mph ASCE 7-16 Figure 26.5-1B
Exposure =	С	
K _{Zt} =	1.0	ASCE 7-16 Sec 26.8.2
K _Z =	0.85	ASCE 7-16 Table 26.10-1
$K_d =$	0.85	ASCE 7-16 Table 26.6-1
K _e =	0.99	ASCE 7-16 Table 26.9-1
$q_h = 0.00256K_zK_{zt}K_dK_eV^2 =$	24.30	psf
Pitch =	19.0	Degrees
γ_{E} =	1.1	
γ _a =	0.8	(Wind Tunnel value)

<u>Upl</u>	ift (W)	Zone(1)	Zone(2r)	Zone(2e)	Zone(3)
Fig. 30-3-2	GC _p =	-2.1	-2.6	-2.7	-2.7
Eq. 29.4-7	$P=q_h(GC_p)(\gamma_E)(\gamma_a)=$	-44.91	-55.60	-57.74	-57.74
	GC _p =	0.3			Figure 30.3-2
	$P=q_h(GC_p)(\gamma_E)(\gamma_a)=$	6.30			Equation 29.4-7

Rafter Attachments: 0.6D+0.6W (CD=1.6)

Connection Check

Attachement max. spacing=	4	ft	Staggered
RTMini-(2) SS304x60mm Withdrawal Value=	894	lbs	Manufacturer Test
Lag Screw Penetration (Minimum)	2	in	

	Allowable	Capacity=	447 II	os	
Zone	Trib Width	Area (ft)	Uplift (lbs)	Down (lbs))
Zone(1)	4	11.0	310.7	102.4	
Zone(2r)	4	11.0	380.1	102.4	
Zone(2e)	4	11.0	394.0	102.4	
Zone(3)	4	11.0	394.0	102.4	
	Conserva	tive Max=	394.0	<	447
			CONNECTION IS	ОК	

- 1. Pv seismic dead weight is negligible to result in significant seismic uplift, therefore the wind uplift governs
- 2. Embedment is measured from the top of the framing member to the tapered tip of a lag screw. Embedment in sheading or other material does not count.

Vertical Load	Resisting S	ystem Design
---------------	-------------	--------------

Vertical Load Resi	isting System D	esign									
Roof Framing	Rafters										
Snow Load	Fully Expos	ed									
	pg=	30	psf		$C_t =$	1.1					
	C _e =	0.9			I _s =	1.0			p _s =	18	psf
	p _f =	21	psf		p _{fmin.} =	20.8	psf			23.56	i plf
	Max Leng	zth, L =		12			•				·
7	Tributary Width	•		16	in						
		RLL =		20	psf	25.21	plf				
		Dr =			psf	13.33	plf				
		PvDL =		3	psf	4	plf				
Load Case: DL		w=			plf						
		M=			lb-ft						
	Mallowable = Sx -	_		1224		>		277	lb-ft	ОК	
Load Case: DL+RL		DL+Lr=			plf						
_		M _{down} =		_	lb-ft						
	Mallowable = Sx	_		1700		>		617	lb-ft	ОК	
Load Case: DL+S	ı	DL+S=			plf						
		M _{down} =			lb-ft			C = 4		01/	
Load Case: DL+0.6	Mallowable = Sx	= 'd+ x : =w		1564 22.4		>		654	lb-ft	OK	
Load Case. DL+0.0	<u>ovv</u>	M _u =			lb-ft						
Mallows	able = Sx x Fb' (-		336 2176				250	lb-ft	ОК	
Load Case: 0.6DL+	•	wiliu)= =		20.1		>		336	ID-IL	UK	
Loud Case: 0.0DE	.0.044	M _u =			lb-ft						
Mallow	able = Sx x Fb' (-		2176		>		322	lb-ft	ОК	
DL+0.45W+0.75(•	vviiiuj-			plf			J_Z	וט ונ		
		M _{down} =			lb-ft						
N	Mallowable = Sx			2176		>		676	lb-ft	ОК	
•		~		, _	.~	-					

Member Capacity

DF-L No.2									
2X8	Design Value	C_L	C _F	C _i	C_r	K _F	ф	λ	Adjusted Value
F _b =	900 psi	1.0	1.2	1.0	1.15	2.54	0.85	0.8	1242 psi
F _v =	180 psi	N/A	N/A	1.0	N/A	2.88	0.75	0.8	180 psi
E =	1600000 psi	N/A	N/A	1.0	N/A	N/A	N/A	N/A	1600000 psi
E _{min} =	580000 psi	N/A	N/A	1.0	N/A	1.76	0.85	N/A	580000 psi

Depth, d = 7.25 in Width, b = 1.5 in

10.875 in² Cross-Sectonal Area, A =

Moment of Inertia, $I_{xx} = 47.6348 \text{ in}^4$ Section Modulus, S_{xx} = 13.1406 in

Allowable Moment, $M_{all} = F_b S_{xx} = 1360.1 \text{ lb-ft}$

Allowable Shear, $V_{all} = 2/3F_{v}'A = 1305.0$ lb

 $DCR=M_u/M_{all} = 0.42 < 1$

 $DCR=V_u/V_{all} = 0.09 < 1$

Satisfactory Satisfactory

Siesmic Loads Check

Roof Dead Load	10 psf
% or Roof with Pv	28.0%
Dpv and Racking	3 psf
Average Total Dead Load	10.8 psf
Increase in Dead Load	3.8% OK

The increase in seismic Dead weight as a result of the solar system is less than 10% of the existing structure and therefore no further seismic analysis is required.

Limits of Scope of Work and Liability

We have based our structural capacity determination on information in pictures and a drawing set titled PV plans - THE ANTHONY CAMPBELL RESIDENCE. The analysis was according to applicable building codes, professional engineering and design experience, opinions and judgments. The calculations produced for this structure's assessment are only for the proposed solar panel installation referenced in the stamped plan set and were made according to generally recognized structural analysis standards and procedures.